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Abstract 

Some consequences of one-valuedness on the real phase space for certain analytic functions 
over the complex phase space of a Hamiltonian system are demonstrated. The Bohr- 
Sommerfeld quantisation conditions are reformulated as one-valuedness conditions for 
these functions on the complex phase space. 

1. Review o f  the Hamilton-Jacobi Theory and Action-Angle Variables 

The Hamilton equations o f  mot ion for a dynamical  system 

aH a H  • • 

ap i qi, aq i -p i ,  i = 1 , . . . , n  (1.1) 

can be transformed (in principle at least) via a canonical transformation to a 
set of  dynamical variables (q~, p~) in terms of  which the new Hamiltonian H '  
is identically zero. The transformed variables are then constants of  the mot ion 
which may, for example, be taken as the 2n values of  the old variables at some 
fixed time. The transformation thus provides a solution o f  the initial value 
problem for the system of  equations (1.1). 

Assuming the generating function S(q, p', t) of the canonical t ransformation 
to be a function of  the old coordinates,  the new momenta  and time, we have 

aS , 
H(q, p, t) + - ~  (q, p ,  t) = H'(q; p', t) - 0 (1.2) 

aS 
- - -  ( 1 . 3 )  Pi - aq i 

, aS 
qi = ap'--~'. (1.4) 
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Substituting the expression for Pi given by equation (1.3) into equation (1.2), 
one gets the Hamilton-Jacobi equation for S (Hamilton's principal function) 

H q , ~ q , t  + - ~ = 0  (1,5) 

The transformed momenta p', which are constants of the motion, may now 
be identified with the n non-trivial constants of  integration c i appearing in the 
solution of equation (1.5). Notice that one of the n + 1 constants of integration 
is trivial in the sense that it is purely additive and, therefore, the dynamical 
variables do not depend on it. When H contains no explicit time dependence 
one may separate S into a time-independent and a q-independent part, i.e. 

S(q i, c i, t) = IV(qi, el) - E t  (1.6) 

where 

M[ tqi ,  ~qi J :  E =  H(p') (1.7) 

Eis  a constant which may be taken as el and expressed as a function of the 
new momenta p '  (constant by construction). The canonical transformation 
generated by IV leaves H invariant. Notice that 

bH 
qi = ~ vi 

bH 

so that 
r 

qi =vit  + ~i (1.8) 

p; = h 

So far we have not specified the constants except that one of them has been 
identified rather arbitrarily with the energy E. If  one is dealing with vibration 
or rotation coordinates qi of a separable systemt one introduces new constants 
Ji as functions of the old ci in the following way: 

=c~ aW(q, cl . . . . .  c.) 
si dqt (1.9) Y 3qi 

t The necessary and sufficient conditions of separability of the Hamilton-Jacobi 
equation have been given by Levi-Civita (1904). They are 

OH ~H ~2H ~H OH ~2H ~H ~H a2H ~H ~H ~2H 
- - +  =0 

3pk 3ps 3qk3qs bpk 3qs 3qk3ps 3qlc~ps ~pk~qs ~qk ~qs ~Pk~Ps 

See also Max Jammer (1966). 
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where the integration is over a complete cycle of vibration or rotation. The 
constant momenta p} are now identified with the new constants Ji, The new 
coordinates 0 i (corresponding to Ji) are derived by expressing W(q, C l . . . . .  cn) 
as W(q, J1 . . . . .  Jn) through equation (1.9) which determines c i as functions of 
Ji and partial differentiation 

OW(q ,  S l ,  . . ., J n )  
Oi = (1 .10)  

aJi 

From equations (1.7) and (1.8) 

E = H(Ji) (1.11) 

OH 
Oi= -~i = vi(Jx" " "' "In) (1.12) 

Oi have the interesting property that during a complete cycle of variation of 
the coordinate qj the change in 0 i is 6ij. Since 

2 aOi 2 a2W 

Thus it follows from equations (1.12) and (1.13) that vi is the frequency asso- 
ciated with the periodic motion ofq i  and one may write for the coordinate qi 
the Fourier series 

+oo 

qi = ~ an exp (2rrinvi) 
nm--oo  

+co 

qi - Xi = ~ an exp (21rinvi) 
n=--oo  

(qi: vibration coordinate) 

(qi: rotation coordinate with period Xi) 

(1.14) 

We are now in a position to present the results of our investigation. 

2. Conjecture and Corollaries 

Theorem (conjecture). Suppose f(p, q) is an analytic function over the com- 
plex phase space containing no explicit time dependence such that 

(i) It is one-valued over the real phase space 

d 
(ii) -~  f(p, q) = 2nvi f(p, q) (2.1) 
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Then 

n 

p = ~ niPi 
i=1 

where nl are integers and v i = 3H/aJi. We have not been able to prove this 
theorem in spite of the intuitive feeling that it must be true. This will not deter 
us from studying some of its consequences and checking them for specific 
dynamical systems. 

Definition. The modified Poisson bracket {H(P, q), A(p, q)}PBff) is defined 
as follows. Express H(p, q) in terms of the actions Ji as explained above, 
H(p, q) = H(J1 . . . . .  "In). In this expression for H regard Ji (i ~ ]) as ordinary 
numbers and write J] as a function of  p, q through the integrated form of the 
equations of motion. With this understanding in mind calculate the Poisson 
bracket of H(p, q) with f(p, q) in the usual way. In terms of this definition we 
may now state the corollary to the above theorem. 

Corollary 1. Suppose f(p,  q) is an analytic function over the complex phase 
space with no explicit time dependence such that 

(i) it is one-valued over the real phase space; 
(ii) ¢ is a function of/), q through its dependence on the Hamiltonian H, 

i.e. ~b(p, q) = ~b(H(p, q)); 

(iii) {~(H(p, q)), f(p, q)}PBf j )  = if(p, q) (2.2) 

Then the function ¢ must be such that its derivative is given by 

where n is an integer and 

1 
~ ' ( H )  = - -  

2twin 

~H 
v j  = ~ (J~,  . . ., Jn) (2.3) 

This is a straightforward consequence of the theorem. We first notice that 

{¢(H(p, q ) ) ,  f ( , p ,  q ) ) P B  = ~b'(/-/){H(p, q), f(p, q))PB 

d , 
= ¢'(H) ~ f ( p  q) (2.4) 

Thus iff(p, q) is one-valued over the real phase space satisfying the equation 

{¢(H(p, q)), f(p, q) }PB = if(p, q) 

we get from the above theorem 

1 n 
- - =  2~r ~ vin i (2.5) 
~'(/-/) i = 1  
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If we now use the modified Poisson bracket defined above, the terms i ~] 
on the right-hand side of equation (2.5) drop out and the corollary follows. 

Corollary 2. For a system with one degree of freedom, let f(p, q) be an 
analytic function over the complex phase space with no explicit time depend- 
ence such that 

(i) it is one-valued over the real phase space; 
(ii) ¢ is a function of p, q through its dependence on the Hamiltonian H, i.e. 

¢(p, q) = ¢(H(P, q)) 

(iii) {¢(H(p, q)), f(p, q))PB = if(p, q) 

Then 

~(E) = 2~n ~)P(E, q) dq + c 

where n is an integer, c is an arbitrary constant, and p(E, q) is the explicit form 
of the function p obtained by solving H(p, q) = E. This follows immediately 
from Corollary 1. 

Since 

1 1 dJ 

~'(H) = 2rwn 2~rn dH 

can now be integrated to give 

l _ ~ j  
¢(H) = 21rn + c 

J= ~ p(H, q) dq 

In Sections 3 and 4 we shall check the validity of Corollary 2 for the non- 
linear oscillator and the relativistic oscillator. In Section 5 we study the 
hydrogen atom and verify Corollary t. 

3. Non-Linear Oscillator 

As the first example illustrating Corollary 2 we shall take the non-linear 
oscillator described by the Hamiltonian 

H =  ½(p2 + a~2q2) + ¼~/4 , X > 0  (3.t) 

We must find the function ¢(/-/) such that the associated annihilation function 
f(p, q) satisfying the equation 

{~b(H(p, q)), f(p, q))PB = if(p, q) (3.2) 
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is one-valued over the real phase space (no branch cuts).t Once this is ensured, 
it follows from the foregoing argument that 

0 = Ore(E) = - ~  p(E, q) dq + c, m integer (3.3) 

Thus the Bohr-Sommerfeld quantisation condition for the system is equivalent 
to 

Ol(En) = nil + c, n integer (3.4) 

To facilitate the determination of 0 we write equation (3.2) as 

{ uv  uv) 
0'(1-1) \ 3 p  3q 3q ~pp = / f  (3Sa) 

i.e. 

Define 

(3.Sb) 

= ½(_p2 + co2q2) + ¼3q4 (3.6) 

Then equation (3.5b) may be rewritten as 

+ ~-g (~ (3.7) 

Thus, on integration of (3.7) we have 

oo0'(H)logf(~,H)= 1 X/(~j2-_H~) ~ ~--g(~+H) d~ 

+ arbitrary function of H (3.8) 

= ~ 2  (1 +x)-1/2[(1 + x )  -1/2 - 1] -1/2 ¢(x) 

= 1 - ~ x  + ~ x  2 - ~ : ~ ' x  a + . . .  

where 

(3.9) 

,~ When/"is one-valued everywhere over the complex phase space and not just over the 
real phase spaee, then the Bohr-Sommerfeld quantisation is equivalent to the usual quan- 
tisation. 
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This series expansion for $ is, however, unnecessary for the following argu- 
ment. Only the formal existence of such a series is all that is needed. Now, 

[2X '~= 1 ~"[2XH\, i J+ (3.10) 

so that on the right-hand side of (3.8) we have to deal with integrals of the 
form 

I .  = x/(~ ~ _ H2  ) d~ 

In = n - ! H2in_2 + 1 ~n_lx/(~ 2 _ H2  ) 
n n 

/ ,  = x / (~  2 - H 2) (3 .11  ) 

Collecting the terms on the right-hand side of (3.8) with the factor 

arising from integrating the even terms ~2p/~ / (~  _ H2)  in the expansion (3.10), 
we get 

s ,  [ ] x/& 2 ~ )  ~ ~ (~ + tt) d~ 

t <o' 7 t<~' s~,  ~' {-J'J t-u I t  ~ t-J i 
+ . . . ]  Io +R (3.12) 

where R consists of the remaining terms not containing the multiplicative factor 
Io. Notice that 

1 7t ~ 1/2 
coq + ~. .z q2 t + ip 

el ° = z:co / (3.13) 
7t \ 112 

+ ~ q 2  coq 1 i - ip 
2co 2 ] 
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Comparing equations (3.8) and (3.12) we observe that the one-valuedness 
off(analytic) over the real phase space leads to the condition 

[ (2;kH~ [2XH~2 1 , .[2~. ~ [2XHI4 1 
mw¢'(H)=½ ~0\~-g ] + ~ w '  ] ~.  v=~ Iw-4H]+\6o ' ] 45 

x ~ ½ 0 I V ( ~ H ) + . .  ,], m integer (3.14) 

Now the right-hand side of equation (3.14) can be expressed in a closed 
form, viz. 

hi;[ [2XH~ 1 [2~,H, 2 
Right-hand side of equation(3.14) = 1  0 ~-g ] + ~ . ~ - ~  ] 

~" o 

  oe0¢l k+ ] 
gg 

~ L  ~ ~ /-/(l + cos O) dO (3 .1S)  7r 
o 

so that 

¢~,{E} = - -  

Let 

lS[2  ] 
~m(E) = ~' 7 (1 + cos 0) dO 

o 

= - -  2XE 2RE (1 + cos 0), a = 6° 4 x O34 
2a 

1 f O(x)x-~/2(~ - x) -~/2 8x 
~r~om 

o 2a 

1 I x/(2)rrw m (1 +x)-1/2[(1 +x) 1/2- 1] -1/2 (2a --X) -112 dx 
o 

(3.16) 

i.e. 

= 2rrm _ -2 q4 dq 

1 ~ (  ¢o2q2 ), \1/2 
~m(E) : 2---~m 2E-  .~ q4) dq + c 

2~rm p(E, q) dq + c 

(3.17) 

(3.18) 
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Thus we have shown explicitly that function ~(H) determined from the re- 
quirement of one-valuedness off(p, q) over the real phase space is indeed such 
that 

m¢(Et~) = trh + c 

is equivalent to the Bohr-Sommerfeld quantisation. 

4. Relativistic Oscillator 

We define the relativistic oscillator as a particle whose equation of motion is 

rnxta + °a2{(xta - Yu) + (x . 2 - y . 2)2u} = 0 

Yu = 0 (4.1) 
where Xu'is the four-vector specifying the particle in space time, and Yu is a 
four-vector which may be interpreted as the position (four) vector of the centre 
of force and the dots denote differentiations with respect to proper time. The 
presence of the term w2(x .  Jc - y .  JC~u in the equations of motion ensures 
that the constraint 2u2 u = - t  (which implies 2u~ u = O) is consistent with the 
equations. 

Suppose, now, that x u = (0, O, q, t), Yu = (0, O, O, t), then the two non-trivial 
equations which follow from (4.1) are identical and the dynamical system is 
described by the single equation 

at 2 - \ ~ - ]  I q = 0 ( 4 . 2 )  

[Notice that we have taken the velocity of light = 1.] 
Equation (4.2) is our starting point. It can be shown that equation (4.2) is 

the Euler-Lagrange equation following from the variation of the action ~ L dt, 
where 

L = m e x p ( _ ~ o 2 q 2 [ 2 ) [ d q s i n - , g d q ] + ( 1  (dq~Z~"21 tat  at/ ) -m (4.3) 
Thus 

aL - m exp ~-  P - ~ T q sin-1 

d aL / \ 
dt  l a ~ q ~  } = m exp (-w2q2]2) 

\ 

/_¢o~q d-~q sin-1 (~tq)+ (1 (dq l2 t - l /2d2q  I x ( at  - \ ~ ]  ] d-~-J (4.4) 
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dt Oq 

coincides with equation (4.2). In order that p, L may be one-valued functions 
of  q, dq/dt, we interpret sin -1 x as that  value which lies in the closed interval 
[-~r/2,  ~'/2]. With this restriction (d/dx)(sin-lx) = + l /x / (1  - x 2 ) .  

The Hamiltonian H is given by 

2m +½m~2q2- ¼ ½m~4qg-w2q2P--2-2+m 1 p4 ~ = - -  ~ V ] + . . .  (4.s) 

Notice the interesting feature 0 ~< H ~< m. When dq/dt = 0, p = 0 and H = 0. As 
dq/dt ~ +-1, p ~ +m~r[2 exp ( -¢o2q 2/2 ) and H - +  m. 

To apply the method,  we write 

~(H),f(p,q))pB=~'(H)[sin(pexp(~2q2/2)t~f 
• . m / ~ q  

1 
+~ s~n(_~ °x~ ~ ) ) ~ ] : ~  ~4.6~ 

We must  determine q~ so that  f i s  one-valued on the real phase space. 
Let us introduce the variables ~ and 77, 

Then 

H = m(1 - exp (¢o2~7)) 

so that  ~(H) may be regarded as a function of  ~(¢10t)) 

(4.8) 

q~(H(~)) = ~l(r/) (4.9) 
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Equation (4.6) can now be written as 

, , ~ f  H (~7~1(r/) ~ = ½f(~ - r/)-l/Z(exp [co=(~ + 77)1 - 1) -1/= (4,10) 

i.e. 

1 exp (--co2r/)~](r/) I af 1 1 
-- m~o f a--~ = -2 X/(~ 2 -- 7/z) ~O[w2(~ + r/)] (4.1 1) 

where 

~ ( X )  = N i X .  (e  x -- 1) -1 /2  

= 1 - ¼ x  + ~ x  z + . . .  

Using the induction formulae (3,11) and collecting the terms with the multi- 
plicative factor 

l°g(  ~+ x/(~2 - ~ / z ) ) 7 /  

separately from the rest (as in Section 3) we have 

f 1 1 (co2r/) z 
[co~(~ + r/)] d~ = ~:(co2r/) 4 2 2 ! ~"(c°2r/) 

3 1 (cozr/) 4 ] 
+ 4 2 4 ! ~(IV)(¢°2~) +"  ' " 

/ 

"l°g( ~+ N/(~2 --'r/2)) + R T I  (4.12) 

1C o oo 
+ x / (~  z - r/2) = ~ - ~ / 2  q 

rl l (log cos PeXp (~2q2/2) )'/2 1 
- 

coq + i p + higher powers 
m 

P +  coq -- i - -  higher powers 
m 

(4.13) 
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The expression in { } on the right-hand side of equation (4.1 2) can be written 
as the closed form 

7r 7r 

1 f ~[oo2r/( 1 +cos O)]dO 6o x/rl f (exp [oo2r/(1 +cos 0)] 1) 
7r 7f 

o o 

. (1 + cos 0) 112 dO. (4.14) 

Integrating (3.1 1) we get 

exp (-wz~/)q)'l(~7) togf=-g  _ - -  ( e x p  [¢o2r/(1 + c o s  0 ) ]  - 1) -I/2 
m o o  o 

+ cos 0) 1/2 dO. log { ~ + x/(~2 - 71=) (1 i 

\ r/ 

[S(~, rt)] t (4.15) e x p  i 

/ 

Bearing in mind the 'rational expansion' (4.13), we see from equation (4,15) 
that f i s  one-valued over the real phase space provided the coefficient of the 
logarithm on the right-hand side is equal to an integral multiple (taken as unity 
in the following) of that on the left-hand side, i.e. 

7t 

m~°2 ~/~ exp (~o2~) / (exp [~o2r/(1 + cos 0)] - 1) -1/2 
= -  2 .  

0 

.(1 + cos 0) 112 dO (4.16) 

Now, 

so that 

" ¢o2 E _  m 

= 2rroo l°g \ m  - - - - - ~ ] )  

(4.17) 



AN ANALYTICITY PROPERTY IN (COMPLEX) PHASE SPACE 85 

Changing the integration variable occurring in the integral on the right-hand 
side of equation (4.17) by means of the transformation 

~ q ~  
cos 0 = 1 

so that 

we get 

f [ m \~,/2 
l t l°g~m---~E)Jw (l +c°sO)"2 dO=4dq 

qmax ( ~-I/2 1 ( E -  m) 2 
q~'(E) = ~ .  4 f 1 m2 exp (~2q2)) dq 

o 
Hence 

¢(E)=-~mexp( -co2q2 /2 )cos - l ( (~mE)exp(w2q2 /2 ) }dq  

5. The Hydrogen A tom 

The Hamiltonian is 
_ _ [  ~ 2 2 

+ - - +  ] - - - -  (5. 1 ) H= prz Po P~ "~ e 
r z r 2 sin 2 0 ] r 

corresponding to the Hamflton-Jacobi equation for the system 

1 [(~IV'~2 1 (aW~2+ 1 (aW~ 2] e 2 

As is well known, the characteristic function W is separable and the two non- 
trivial constants of integration arising in the solution of IV can be eliminated 
in favour of the action 'variables' 

2 .  aw(~)  _ _ 2~reo 

dO = + "P - J, feaW(O) 2rr[(po2 p2  \112 
o =~ju ~ [ \  sin2 0 ) P ~ o }  (5.3) 

where W(r, O, : )  = W(r) + W(O) + W(¢). 
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Finally, introducing the action variable Jr 

=~ oIf(r) 
J r ? F a  r dr (5.4) 

and using the equation for If(r) 

Or ] 4rr=r= - 2 m  + =0  (5.5) 

one may express the energy as a function of Jr, Jo, J~o through the equation 

Jr - 47rZr~ j (5.6) 

Explicitly, 

2rr2me a 
E= (jr + jo + j~o)2 (5.7) 

The system is two-fold degenerate. The frequencies Vr, v0, v~o are equal tO 

~E 0E ~E [ 2 1 '/2 
. . . .  asr 0Jo 0:,= \-rmTme, ] (-~)~/~ (s.s) 

(i) Let 

{4)r(H(P, q)), f}P.B. (r) = i f  (5.9) 

Now the modified Poisson bracket may be written as an ordinary Poisson 
bracket 

{q~r(H), f}r. B. (r) = {$r(Hr), f}p. B. (5.10a) 

where 

I t -  1 ( (Jo + J~o)='~ e 2 + - -  (5.10b) r - ~  er = 4~r2r 2 1 -  r 

Jo, J~ are to be regarded as ordinary numbers (rather than dynamical variables) 
when calculating the Poisson bracket on the right-hand side of equation (5.10a). 
Define 

= /,2 +7~ , where C= 4r? 

r /=Hr (S.11) 
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Then equation (5.10a) may be written as 

, ,  , 1 a f  m e  4 
Arl)  ~ ~ -  = (~ _ */)= [C(~ - r~) = - 2me4(~ - rl) - 2me4*~] -1/= 

= ( -2m~7) - l lZme  z (~ _ */)-----~ 1 - (~ - */) 

\ 4m*/e4 8rt2J (~_,1)2 + . . .  (5.12) 

On integration of  (5.12) one can see that we are assured of  f being one-valued 
over the (real) phase space provided the coefficient of  the logarithmic singu- 
larity on the right-hand side is an integral multiple of  that on the right-hand 
side, i.e. 

n¢;(*/) = ( -  2m*/)-a12m2 e2 (5.13) 

Thus it is readily observed on comparison with equation (5.8) that 

1 
4)'r(E) = - -  (5.14) 

n . 2Try r 

(ii) Now, suppose 

{~bo(H(P, q)) ,  f}V.B.(O) = i f  

As explained above, we write 

(5.15) 

where 

Define 

so that 

{0o(I0, f}P.B.(o) = {%(no), f}P.B. 

H o = - 2 7 r 2 m e 4 [ J r + 2 r t ( P o  2 
4~r 2 sin 2 0 

c, t, 
sin 2 O] 

= cot 0, 

j 2  
where C1 .... ~o 

4~r 2 

(5.16) 

(5.17) 

C2 = Jr 
21r 

H = - ½ m e  4 [C: + ~/(2r/)] -2, (5.18) 
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Then equation (5.15) may be written as 

~b(H)~/'(,7) ± ~ = (c~)-m t 

Integration of equation (5.19) then gives 

(5.19) 

Thus 

where 

H~ = -2rr2me 4 [Jr + 3"0 + 2rrP~]-2 

aH~ = (_2mH~o)a/2 1 (5.27) 
aP~ " m=e = 

and equation (5.24) may be written as 

~'~(n,) . ( - 2 m H ¢ )  312 1_~ a f = i f  (5.28) 
m2e 2 a~o 

The one-v~duedness condition is, therefore, 

(_2mI,1)_3t2m2e2 1 = 1 (5.29) 
q~(Hs°) = n n. 2rrv~o 

(5.25) 

(5.26) 

+ arbitrary function of r/. (5.20) 
Thus the requirement of one-valuedness of foyer  the real phase space gives 

the condition 1 
n¢°(tOZ4'(~) = ~/(2~) (5.21) 

Now, from equation (5.18) 

1 
H'01) = ( -2mH) 3/2 m2e 2 x/(2r/) (5.22) 

so that from equations (5.21), (5.22) and (5.8) 

C)'o(H) = 1 m2e2(_2mH)_3/2 = 1 (5.23) 
n n .  2rm0 

(iii) Finally, suppose 

{~(H(p ,  q)), f}p. B. (~) = i f  (5.24) 
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6. Concluding Remarks 

The original motivation for this investigation arose from a study of the logi- 
cal gaps in the transition from classical to quantum mechanics. Historically, 
the Bohr-Sommerfeld quantisation rules of the old quantum theory have 
played a very crucial role in the development of quantum mechanics. Through 
the application of the Bohr correspondence principle at the level of canonical 
coordinates and momenta, Born & Jordan (1925) derived the well-known 
commutation relations from these rules. It is, however, well known that the 
Bohr-Sommerfeld quantisation rules are unambiguous only when formulated 
in terms of dynamical variables which make the Hamilton-Jacobi equation 
separable (if such variables exist). Thus the 'derivation' of the commutation 
relations is incomplete. In the subsequent development of the subject this cir- 
cumstance tended to be ignored. Rather, the emphasis was shifted to the 
treatment of non-periodic motions and the consequent development in the 
interpretation of dynamical variables as operators on a Hilbert space, originated 
by Born & Wiener (1925-26). Thus the straightforward generalisation of these 
commutation relations to the usual equal-time commutation relations for an 
interacting field involves a big logical gap. An interacting field cannot in 
general be regarded as the limiting case of a (Hamilton-Jacobi) separable 
system. In view of these considerations a revival of interest in the Bohr- 
Sommerfeld quantisation rules is worthwhile. Also, one must bear in mind 
that the derivation of the commutation relations for p ' s  and q's is one special 
instance of the application of Bohr's general philosophy embodied in the 
correspondence principle. If one would introduce the correspondence prin- 
ciple at a level more directly accessible to experiment (e.g. for currents) one 
may thereby introduce a lot of formal simplicity into the theory. 
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